Published work

Learn more about our work

A bead-based method for high- throughput mapping of the sequence- and force-dependence of T-cell activation

Feng, Y., Zhao, X., White, A.K., Garcia, C.K., and Fordyce, P.M. (2022). Nature Methods 19(10), 1295-1305.

Technology highlighted in “Method to Watch in 2023”: Mukhopadhyay M. (2023) “Immunomechanics”, Nature Methods 20, 35.

Research Briefing: Fordyce, P.M. and Feng, Y. (2022). “BATTLES: high-throughput screening of antigen recognition under force”, Nature Methods 19, 1189–1190.

MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically-encoded hydrogel beads using a simple single-layer microfluidic device

Feng, Y., White, A.K., Hein, J.B., Appel, E.A., and Fordyce, P.M. (2020). Microsystems and Nanoengineering 6(1), 1-13.

αβ TCR mechanosensing forces out serial engagement

Feng, Y., Reinherz, E.L., and Lang, M.J. (2018). Trends in Immunology, 39(8), 596-609.

Mechanosensing drives acuity of αβ T cell recognition

Feng, Y., Brazin, K.N., Kobayashi, E., Mallis, R.J., Reinherz, E.L., and Lang, M.J. (2017). Proceedings of the National Academy of Sciences 114, E8204- E8213.

“From the cover” paper, and commented by James, J.R. (2017). “Using the force to find the peptides you’re looking for.” PNAS 114, 10303-10305.

Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime

Das, D.K., Feng, Y., Mallis, R.J., Li, X., Keskin, D.B., Hussey, R.E., Brady, S.K., Wang, J.-H., Wagner, G., Reinherz, E.L., and Lang, M.J. (2015). Proceedings of the National Academy of Sciences 112 (5), 1517-1522.

Parsing digital or analogue TCR performance through piconewton forces

Akitsu, A., Kobayashi E., Feng, Y., Stephens, H.M., Brazin, K.N., Masi, D.J., Kirpatrick, E.H., Mallis, R.J., Duke-Cohan, J.S., Booker M.A., Cinella V., Feng W.W., Holliday E.L., Lee J.J., Zienkiewicz K.J., Tolstorukov M.Y., Hwang W., Lang M.J., Reinherz E.L. (2024). Science Advances, 10, eado4313.

Measuring αβ T-cell receptor-mediated Mechanosensing using optical tweezers combined with fluorescence imaging

Stephens, H.M., Brazin, K.N., Mallis, R.J., Feng, Y., Banik, D., Reinherz, E.L., and Lang M.J. (2022). Optical Tweezers: Methods and Protocols, 727-753.

Tuning T cell receptor sensitivity through catch bond engineering

Zhao, X., Kolawole, E.M., Chan, W., Feng, Y., Yang, X., Jude, K.M., Sibener, L.V., Fordyce, P.M., Germain, R.N., Evavold, B.D., and Garcia, C.K. (2021). Science 376(6589): eabl5282.

A robotic microscope system to examine T cell receptor acuity against tumor neoantigens: A New Tool for Cancer Immunotherapy Research

Ong, L.L.S., Zhu, H., Banik, D., Guan, Z., Feng, Y., Reinherz, E.L., Lang, M.J., and Asada, H. (2019). IEEE Robotics and Automation Letters 4(2), 1760–1767.

The T-cell receptor α bipartite transmembrane domain coordinates antigen triggering by regulating bilayer immersion, CD3 association and transcriptomes

Brazin, K.N., Mallis, R.J., Boeszoermenyi, A., Feng, Y., Yoshizawa, A., Reche, P.A., Kaur, P., Bi, K., Hussey, R.E., Duke-Cohan, J.S., Song, L., Wagner, G., Arthanari, H., Lang, M.J., and Reinherz, E.L. (2018). Immunity 49(5), 829–841.

“Editor’s choice” of Science Signaling by Williams, E.R. “The basics of mechanotransduction” 11(556), eaau2223.

“Editor’s choice” of Science Translational Medicine by Hinrichs, C.S. “T cell receptors communicate by movement” 10(471), eaaw0522.

Previewed by Lichauco, K., Lee, M.S., and Kuhns, M.S. (2018). “Bonds Voyage! A Dissociative Model of TCR-CD3 Triggering Is Proposed” Immunity 49(5), 786-788.

Biophysical features of the αβTCR mechanome that drive high avidity T-cell recognition

Feng, Y., Brazin, K.N., Kobayashi, E., Mallis, R.J., Reinherz, E.L., and Lang, M.J. (2018). Biophysical Journal 114 (3), 201a.

G-101 Special lecture: The T cell receptor is a mechanosensor

Reinherz, E.L., Mallis, R.J., Das, D.K., Feng, Y., Hwang, W., Wang, J.-h., Wagner, G., Lang, M.J., and Brazin, K.N. (2016). JAIDS Journal of Acquired Immune Deficiency Syndromes 71, 64.

Structural Features of the αβTCR Mechanotransduction Apparatus That Promote pMHC Discrimination

Brazin, K.N., Mallis, R.J., Das, D.K., Feng, Y., Hwang, W., Wang, J.-h., Wagner, G., Lang, M.J., and Reinherz, E.L. (2015). Frontiers in Immunology 6.

Build your own” ADC mimics: Identification of non-toxic linker/payload mimics for HIC-based DAR determination, high-throughput optimization, and continuous flow conjugation

Emmert M.H., Bottecchia C., Barrientos R., Feng Y., Holland-Moritz D., Hughes G., Lam Y.H., Regalado E., Ruccolo S., Sun S., Chmielowski R., Yang C., Lévesque F. (2024). Organic Process Research & Development, 28(8), 3326- 3338.

Global substrate identification and high throughput in vitro dephosphorylation reactions uncover PP1 and PP2A-B55 specificity principles

Hein, J.B., Nguyen, H.T., Garvanska, D.H., Nasa, I., Kruse, T., Feng, Y., Lopez-Mendez, B., Davey, N., Kettenbach, A.N., Fordyce, P.M., and Nilsson, J. (2023). Molecular Systems Biology, e11782.

A short excerpt on the publication subject matter.

Selective crystal growth of theophylline- saccharin cocrystal on self-assembled monolayer from incongruent system

Hou, X., Feng, Y., Zhang, P., Wei, H., and Dang, L. (2015). Crystal Growth & Design 15 (10), 4918-4924.

Analyzing solution complexation of cocrystals by mathematic models and in-situ ATR-FTIR spectroscopy

Feng, Y., Dang, L., and Wei, H. (2012). Crystal Growth & Design 12(4), 2068-2078.

Protamine-induced biosilica as efficient enzyme immobilization carrier with high loading and improved stability

Li, L., Jiang, Z., Wu, H., Feng, Y., and Li, J. (2009). Materials Science and Engineering: C 29 (6), 2029-2035.